CS400 assignment 3
 Intersection writeup: Quadric Surfaces

Marc ten Bosch
December 15, 2004

1 Equation and Scene Format

Quadric Surfaces are second-order algebraic surface given by the general equation

$$
A x^{2}+2 B x y+2 C x z+2 D x+E y^{2}+2 F y z+2 G y+H z^{2}+I z+J=0
$$

Which can be written in matrix form

$$
\mathbf{x}^{T} \mathbf{Q x}=0
$$

where

$$
\mathbf{x}=\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \quad \mathbf{x}^{T}=[x, y, z, 1] \quad \mathbf{Q}=\left[\begin{array}{cccc}
A & B & C & D \\
B & E & F & G \\
C & F & H & I \\
D & G & I & J
\end{array}\right]
$$

Note that $\mathbf{x}^{T} \mathbf{Q x}$ is the dot product of \mathbf{x} and $\mathbf{Q x}$. The objects are specified in the scene file as:

QUADRIC A B C D E F G H I J <surface properties>

2 Intersection calculation

Substituting the ray equation

$$
\rho(t)=\mathbf{P}_{\mathbf{0}}+t \mathbf{d}_{\mathbf{0}}
$$

Into the quadric's equation

$$
\mathbf{x} \cdot \mathbf{Q x}=0
$$

yeilds

$$
\left(\mathbf{P}_{\mathbf{0}}+t \mathbf{d}_{\mathbf{0}}\right) \cdot \mathbf{Q}\left(\mathbf{P}_{\mathbf{0}}+t \mathbf{d}_{\mathbf{0}}\right)=0
$$

Distributing the matrix multiplication we get

$$
\left(\mathbf{P}_{\mathbf{0}}+t \mathbf{d}_{\mathbf{0}}\right) \cdot\left(\mathbf{Q} \mathbf{P}_{\mathbf{0}}+t \mathbf{Q} \mathbf{d}_{\mathbf{0}}\right)=0
$$

By distributing the dot product we get

$$
\begin{gathered}
\mathbf{P}_{\mathbf{0}} \cdot \mathbf{Q} \mathbf{P}_{\mathbf{0}}+t \mathbf{d}_{\mathbf{0}} \cdot \mathbf{Q} \mathbf{P}_{\mathbf{0}}+t \mathbf{P}_{\mathbf{0}} \cdot \mathbf{Q} \mathbf{d}_{\mathbf{0}}+t^{2} \mathbf{d}_{\mathbf{0}} \cdot \mathbf{Q} \mathbf{d}_{\mathbf{0}}=0 \\
\mathbf{P}_{\mathbf{0}} \cdot \mathbf{Q} \mathbf{P}_{\mathbf{0}}+2 t \mathbf{d}_{\mathbf{0}} \cdot \mathbf{Q} \mathbf{P}_{\mathbf{0}}+t^{2} \mathbf{d}_{\mathbf{0}} \cdot \mathbf{Q} \mathbf{d}_{\mathbf{0}}=0
\end{gathered}
$$

Rearranging this equation, we get the quadratic equation

$$
a t^{2}+b t+c
$$

where

$$
\begin{aligned}
& a \equiv \mathbf{d}_{\mathbf{0}}{ }^{T} \mathbf{Q} \mathbf{d}_{\mathbf{0}} \\
& b \equiv \mathbf{2 d}_{\mathbf{0}}{ }^{T} \mathbf{Q} \mathbf{P}_{\mathbf{0}} \\
& c \equiv \mathbf{P}_{\mathbf{0}}{ }^{T} \mathbf{Q} \mathbf{P}_{\mathbf{0}}
\end{aligned}
$$

Which can be solved the exact same way as the Ray-Sphere intersection.

3 Surface normal computation

Once the intersection point r is calculated, we take the gradient of the quadric implicit equation

$$
f(x, y, z): A x^{2}+2 B x y+2 C x z+2 D x+E y^{2}+2 F y z+2 G y+H z^{2}+I z+J=0
$$

To get the normal at any point $\mathrm{x}, \mathrm{y}, \mathrm{z}$

$$
\begin{gathered}
N=\left[\begin{array}{c}
\frac{\partial}{\partial x} f(x, y, z) \\
\frac{\partial}{\partial y} f(x, y, z) \\
\frac{\partial}{\partial z} f(x, y, z)
\end{array}\right] \\
=\left[\begin{array}{c}
2(A x+B y+C z+D) \\
2(B x+E y+F z+G) \\
2(C x+F y+H z+I)
\end{array}\right]
\end{gathered}
$$

And plugin $r=\left[r_{x}, r_{y}, r_{z}\right]^{T}$. Note that N must be normalized and therefore, the multiplication by two can be deleted.

