Nonconvex Rigid Bodies with Stacking Implementation Notes

Marc ten Bosch
March 172008

1 Notation

After applying an impulse \boldsymbol{j} at a point \boldsymbol{r} the new linear and angular velocities will be

$$
\begin{gathered}
\boldsymbol{v}^{\prime}=\boldsymbol{v}+\frac{\boldsymbol{j}}{m} \\
\boldsymbol{\omega}^{\prime}=\boldsymbol{\omega}+\boldsymbol{I}^{-1}(\boldsymbol{r} \times \boldsymbol{j})
\end{gathered}
$$

It is possible to transform the second equation using the cross product matrix of \boldsymbol{r}

$$
\boldsymbol{r}_{*}=\left[\begin{array}{ccc}
0 & -r_{z} & r_{y} \\
r_{z} & 0 & -r_{x} \\
-r_{y} & r_{x} & 0
\end{array}\right]
$$

This matrix has the property that, for a vector \boldsymbol{b}

$$
\begin{aligned}
\boldsymbol{r} \times \boldsymbol{b} & =\boldsymbol{r}_{*} \boldsymbol{b} \\
\boldsymbol{b} \times \boldsymbol{r} & =\boldsymbol{r}_{*}^{T} \boldsymbol{b}
\end{aligned}
$$

This gives:

$$
\boldsymbol{\omega}^{\prime}=\boldsymbol{\omega}+\boldsymbol{I}^{-1}\left(\boldsymbol{r}_{*} \boldsymbol{j}\right)
$$

The instantaneous velocity \boldsymbol{u} at the point \boldsymbol{r} is

$$
\boldsymbol{u}=\boldsymbol{v}+\omega \times \boldsymbol{r}
$$

After the impulse is applied, the instantaneous velocity will be

$$
\begin{aligned}
\boldsymbol{u} & =\boldsymbol{v}^{\prime}+\omega^{\prime} \times \boldsymbol{r} \\
\boldsymbol{u}^{\prime} & =\boldsymbol{v}+\frac{\boldsymbol{j}}{m}+\left(\omega+\boldsymbol{I}^{-1}\left(\boldsymbol{r}_{*} \boldsymbol{j}\right)\right) \times \boldsymbol{r}
\end{aligned}
$$

Which can be rewritten in terms of \boldsymbol{u} and \boldsymbol{j}

$$
\begin{aligned}
& \boldsymbol{u}^{\prime}=\boldsymbol{v}+\omega \times \boldsymbol{r}+\frac{\boldsymbol{j}}{m}+\left(\boldsymbol{I}^{-1}\left(\boldsymbol{r}_{*} \boldsymbol{j}\right)\right) \times \boldsymbol{r} \\
& \boldsymbol{u}^{\prime}=\boldsymbol{u}+\frac{\boldsymbol{j}}{m}+\boldsymbol{r}_{*}^{T}\left(\boldsymbol{I}^{-1}\left(\boldsymbol{r}_{*} \boldsymbol{j}\right)\right) \\
& \boldsymbol{u}^{\prime}=\boldsymbol{u}+\left(\frac{\boldsymbol{\delta}}{m}+\boldsymbol{r}_{*}^{T} \boldsymbol{I}^{-1} \boldsymbol{r}_{*}\right) \boldsymbol{j} \\
& \boldsymbol{u}^{\prime}=\boldsymbol{u}+\boldsymbol{K} \boldsymbol{j}
\end{aligned}
$$

where $\boldsymbol{\delta}$ is the 3 by 3 identity matrix.
When bodies a and b collide, the impulse \boldsymbol{j} is applied in an equal and opposite manner to each body. The relative velocity at the point \boldsymbol{r} (expressed in each body's coordinate system) will be

$$
\begin{aligned}
& \boldsymbol{u}_{r e l}^{\prime}=\boldsymbol{u}_{a}^{\prime}-\boldsymbol{u}_{b}^{\prime} \\
& \boldsymbol{u}_{r e l}^{\prime}=\left(\boldsymbol{u}_{a}+\boldsymbol{K}_{a} \boldsymbol{j}\right)-\left(\boldsymbol{u}_{b}+\boldsymbol{K}_{b}(-\boldsymbol{j})\right) \\
& \boldsymbol{u}_{r e l}^{\prime}=\boldsymbol{u}_{a}-\boldsymbol{u}_{b}+\left(\boldsymbol{K}_{a}+\boldsymbol{K}_{b}\right) \boldsymbol{j} \\
& \boldsymbol{u}_{r e l}^{\prime}=\boldsymbol{u}_{r e l}+\boldsymbol{K}_{T} \boldsymbol{j}
\end{aligned}
$$

From now on the subscript of the relative velocity $\boldsymbol{u}_{\text {rel }}$ will be dropped for simplicity.

2 Frictionless impulse

The relative velocity \boldsymbol{u} can be split into a normal component $u_{n} \boldsymbol{n}$ along the normal \boldsymbol{n} to the collision and a tangential component $u_{t} \boldsymbol{t}=\boldsymbol{u}-u_{n} \boldsymbol{n}$ in the plane of the collision, where \boldsymbol{n} and \boldsymbol{t} are normalized. The same can be done for j. After the impulse is applied the normal component of the relative velocity at the point \boldsymbol{r} will be

$$
\begin{aligned}
& u_{n}^{\prime}=\left(u+\boldsymbol{K}_{T} \boldsymbol{j}\right) \cdot \boldsymbol{n} \\
& u_{n}^{\prime}=u_{n}+\boldsymbol{n}^{T}\left(\boldsymbol{K}_{T} \boldsymbol{j}\right) \\
& u_{n}^{\prime}=u_{n}+\boldsymbol{n}^{T} \boldsymbol{K}_{T} \boldsymbol{n} j_{n}
\end{aligned}
$$

The purpose of the impulse \boldsymbol{j} is to reverse the velocity and scale it by the coefficient of restitution ϵ along the normal \boldsymbol{n}, that is $u_{n}^{\prime}=-\epsilon u_{n}$. The impulse is therefore purely normal $\left(\boldsymbol{j}=j_{n} \boldsymbol{n}\right)$. Substituting into the previous equation and solving for j_{n} gives

$$
j_{n}=\frac{-(1+\epsilon) u_{n}}{\boldsymbol{n}^{T} \boldsymbol{K}_{T} \boldsymbol{n}}
$$

3 Frictional impulse

In addition to the previous impulse, assume static friction, which means the objects must not slide along the tangential direction, i.e. $u_{t}=0$. This gives $\boldsymbol{u}^{\prime}=-\epsilon u_{n} \boldsymbol{n}$, or

$$
-\epsilon u_{n} \boldsymbol{n}=\boldsymbol{u}+\boldsymbol{K}_{T} \boldsymbol{j}
$$

which can be solved for \boldsymbol{j} to get

$$
\boldsymbol{j}=\boldsymbol{K}_{T}^{-1}\left(-\boldsymbol{u}-\epsilon u_{n} \boldsymbol{n}\right)
$$

Given a coefficient of friction μ the maximum impulse that the frictional force can apply to resist motion is μj_{n}. Therefore switch to kinetic friction instead if $j_{t} \geq \mu j_{n}$. The frictional impulse in that case will be $\boldsymbol{j}=j_{n} \boldsymbol{n}-\mu j_{n} \boldsymbol{t}=j_{n} \boldsymbol{k}$. Subsitute and solve for j_{n}

$$
\begin{aligned}
-\epsilon u_{n} & =u_{n}+\boldsymbol{n}^{T} \boldsymbol{K}_{T} \boldsymbol{k} j_{n} \\
j_{n} & =\frac{-(1+\epsilon) u_{n}}{\boldsymbol{n}^{T} \boldsymbol{K}_{T} \boldsymbol{k}}
\end{aligned}
$$

4 2D case

In the 2 D case, by ignoring the z component of \boldsymbol{r}_{*} we get

$$
\boldsymbol{K}=\frac{\boldsymbol{\delta}}{m}+I^{-1}\left[\begin{array}{cc}
r_{y}^{2} & -r_{x} r_{y} \\
-r_{x} r_{y} & r_{x}^{2}
\end{array}\right]
$$

where $\boldsymbol{\delta}$ is the 2 by 2 identity matrix. Everything else stays the same.

