Nonconvex Rigid Bodies with Stacking Implementation Notes

Marc ten Bosch

March 17 2008

1 Notation

After applying an impulse \boldsymbol{j} at a point \boldsymbol{r} the new linear and angular velocities will be

$$oldsymbol{v}' = oldsymbol{v} + rac{oldsymbol{j}}{m}$$
 $oldsymbol{\omega}' = oldsymbol{\omega} + oldsymbol{I}^{-1} \left(oldsymbol{r} imes oldsymbol{j}
ight)$

It is possible to transform the second equation using the cross product matrix of \boldsymbol{r}

$$\boldsymbol{r_*} = \begin{bmatrix} 0 & -r_z & r_y \\ r_z & 0 & -r_x \\ -r_y & r_x & 0 \end{bmatrix}$$

This matrix has the property that, for a vector \boldsymbol{b}

$$m{r} imes m{b} = m{r}_* m{b}$$

 $m{b} imes m{r} = m{r}_*^T m{b}$

This gives:

$$\boldsymbol{\omega}' = \boldsymbol{\omega} + \boldsymbol{I}^{-1}\left(\boldsymbol{r_{*}j}\right)$$

The instantaneous velocity \boldsymbol{u} at the point \boldsymbol{r} is

$$\boldsymbol{u} = \boldsymbol{v} + \boldsymbol{\omega} \times \boldsymbol{v}$$

After the impulse is applied, the instantaneous velocity will be

$$egin{aligned} m{u} &= m{v}' + \omega' imes m{r} \ m{u}' &= m{v} + rac{m{j}}{m} + ig(\omega + m{I}^{-1} \left(m{r_{*}}m{j}
ight)ig) imes m{r} \end{aligned}$$

Which can be rewritten in terms of \boldsymbol{u} and \boldsymbol{j}

$$u' = v + \omega \times r + \frac{j}{m} + (I^{-1}(r_*j)) \times r$$
$$u' = u + \frac{j}{m} + r_*^T (I^{-1}(r_*j))$$
$$u' = u + \left(\frac{\delta}{m} + r_*^T I^{-1} r_*\right) j$$
$$u' = u + Kj$$

where $\boldsymbol{\delta}$ is the 3 by 3 identity matrix.

When bodies a and b collide, the impulse j is applied in an equal and opposite manner to each body. The relative velocity at the point r (expressed in each body's coordinate system) will be

$$egin{aligned} & m{u}'_{rel} = m{u}'_a - m{u}'_b \ & m{u}'_{rel} = (m{u}_a + m{K}_a m{j}) - (m{u}_b + m{K}_b \, (-m{j})) \ & m{u}'_{rel} = m{u}_a - m{u}_b + (m{K}_a + m{K}_b) \, m{j} \ & m{u}'_{rel} = m{u}_{rel} + m{K}_T m{j} \end{aligned}$$

From now on the subscript of the relative velocity u_{rel} will be dropped for simplicity.

2 Frictionless impulse

The relative velocity \boldsymbol{u} can be split into a normal component $u_n\boldsymbol{n}$ along the normal \boldsymbol{n} to the collision and a tangential component $u_t\boldsymbol{t} = \boldsymbol{u} - u_n\boldsymbol{n}$ in the plane of the collision, where \boldsymbol{n} and \boldsymbol{t} are normalized. The same can be done for j. After the impulse is applied the normal component of the relative velocity at the point \boldsymbol{r} will be

$$u'_{n} = (u + K_{T} j) \cdot n$$

$$u'_{n} = u_{n} + n^{T} (K_{T} j)$$

$$u'_{n} = u_{n} + n^{T} K_{T} n j_{n}$$

The purpose of the impulse j is to reverse the velocity and scale it by the coefficient of restitution ϵ along the normal n, that is $u'_n = -\epsilon u_n$. The impulse is therefore purely normal $(j = j_n n)$. Substituting into the previous equation and solving for j_n gives

$$j_n = \frac{-(1+\epsilon)\,u_n}{\boldsymbol{n}^T\boldsymbol{K}_T\boldsymbol{n}}$$

3 Frictional impulse

In addition to the previous impulse, assume static friction, which means the objects must not slide along the tangential direction, i.e. $u_t = 0$. This gives $u' = -\epsilon u_n n$, or

$$-\epsilon u_n \boldsymbol{n} = \boldsymbol{u} + \boldsymbol{K}_T \boldsymbol{j}$$

which can be solved for j to get

$$\boldsymbol{j} = \boldsymbol{K}_T^{-1} \left(-\boldsymbol{u} - \epsilon u_n \boldsymbol{n} \right)$$

Given a coefficient of friction μ the maximum impulse that the frictional force can apply to resist motion is μj_n . Therefore switch to kinetic friction instead if $j_t \ge \mu j_n$. The frictional impulse in that case will be $\mathbf{j} = j_n \mathbf{n} - \mu j_n \mathbf{t} = j_n \mathbf{k}$. Subsitute and solve for j_n

$$-\epsilon u_n = u_n + \boldsymbol{n}^T \boldsymbol{K}_T \boldsymbol{k} j_n$$
$$j_n = \frac{-(1+\epsilon) u_n}{\boldsymbol{n}^T \boldsymbol{K}_T \boldsymbol{k}}$$

4 2D case

In the 2D case, by ignoring the z component of r_* we get

$$\boldsymbol{K} = \frac{\boldsymbol{\delta}}{m} + I^{-1} \left[\begin{array}{cc} r_y^2 & -r_x r_y \\ -r_x r_y & r_x^2 \end{array} \right]$$

where δ is the 2 by 2 identity matrix. Everything else stays the same.